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Abstract. This paper discusses two approaches to enhance multi-site scheduling for grid
environments. First the potential improvements of multi-site scheduling by applying con-
straints for the job fragmentation are presented. Subsequently, an adaptive multi-site schedul-
ing algorithm is pointed out and evaluated. The adaptive multi-site scheduling uses a simple
decision rule whether to use or not to use multi-site scheduling. To this end, several ma-
chine configurations have been simulated with different parallel job workloads which were
extracted from real traces. The adaptive system improves the scheduling results in terms of
a short average response time significantly.

1 Introduction

Computational grids gained much attention in recent years as shown by current initiatives like
the Global Grid Forum [15] or the implementations of the Globus project [12]. The idea of joining
resources that are geographically distributed leads to the expectation to enable access to limited
resources. In addition, potentially a larger number of resources is available for a single job. This is
assumed to result in a reduction of the average job response time. Moreover, the utilization of the
grid computers and the job-throughput is likely to improve due to load-balancing effects between
the participating systems.

The management of the grid environment, especially the scheduling of the computational
tasks, becomes a rather complex problem. The computational resources in a grid are often high-
performance computers as for example parallel machines or clusters. Without grid computing local
users are typically only working on the local resources. These resources have their own local man-
agement systems. Job scheduling for parallel computers has been subject to research for a long
time. However, most real systems still use some kind of list scheduling, as e.g. backfilling [11]. It
is the task of a grid scheduler to utilize the local management systems for scheduling jobs on a
machine. Previous works discussed several strategies for such a grid scheduler. One approach is
the transition and modification of conventional list scheduling strategies for grid usage [16, 5, 6].
Alternatively, economic models are for a grid schedulers are being discussed [2, 3]. In this paper
we continue the examination of a non economic grid scheduler with support for multi-site job
execution.

The usage of multi-site applications [1] for the grid scenario has been examined in previous
works. Multi-site computing is the execution of a job in parallel at different sites. Under the condi-
tion of a limited communication overhead, the results from [5] showed that for distinct workloads
derived from real machine traces multi-site applications improve the overall average response time.
This overhead mainly results from the communication between the job parts. It has been modelled
by extending the execution time of a job by a certain percentage.

If a single site job start was possible immediately the applied algorithm always tried to initiate
a multi-site execution. In this paper we examine whether the potential benefit of multi-site can
be improved by applying heuristics and limitations on the multi-site scheduling and adding a first
approach of an adaptive decision process to our algorithm. As in [6], discrete event simulations on
the basis of workload traces have been executed for sample configurations.

The results show that the proposed strategy is a significant improvement in terms of average
weighted response time.



The following sections are organized as follows. Section 2 gives a short overview on our model
for the grid scenario and the applied algorithm are presented in section 3. The evaluation is
presented in Section 4. The paper ends with a brief conclusion in Section 5.

2 Model

In this work our scenario is based on independent computing sites with existing local workload
and management system. We examine the impact from a job scheduling point of view if the com-
puting sites participate in a grid environment [5, 6, 13]. The sites combine their resources and
share incoming jobs. That is, job submissions of all sites are redirected to and then distributed
by a grid scheduler. This scheduler exclusively controls all grid resources. We assume that each
participating site in the computational grid has a single MPP (Massive Parallel Processor system),
which consists of several nodes. Nodes (resources) are single-processor systems with local memory
and disc. The nodes are linked with a fast interconnect that does not favor any specific commu-
nication pattern inside the machine [10]. The actual mapping of a job on the nodes is neglected.
The machines support space-sharing and run the jobs in an exclusive fashion. Moreover, the jobs
are not preempted nor time-sharing is used. Therefore, once started a job runs until completion.
Furthermore, a job that exceeds its allocated time is cancelled.

Typically a preselection phase takes place ahead of the actual scheduling process and generates
a reduced se of resources, that are all suitable for executing the job request. In our study we neglect
this preselection and focus on the job scheduling process. Therefore, sites only differ in the number
of nodes and all resources are of the same type and all jobs can be executed on all nodes.

The jobs are executed without further user interaction. In our grid computing scenario, a
job can be transmitted and executed at a remote site without any additional overhead. In real
implementations the transport of data requires additional time which is taken into account in our
model as part of the communication overhead, that extents the job’s run time. This effect can
often be hidden by pre- and postfetching before and after the execution. In this case the resulting
overhead is not necessarily part of the scheduling process. The data management is subject to
further research.

Jobs are submitted by independent users on the local sites. This produces an incoming stream of
jobs over time. Therefore, the scheduling problem is an on-line scenario without any knowledge on
future job submissions. Our evaluations are restricted to batch jobs, as this job type is dominant on
most MPP systems. Interactive jobs are often executed on dedicated partitions of the system, where
the effects of scheduling algorithms are limited [17]. A job request consists of several parameters as
e.g. the requested run time and the requested number of resources. After submission a job requests
a fixed number of resources that are necessary for starting the job. This number is not changed
during the execution of the job. That is jobs are not moldable or malleable [7, 8]. It is the task of
the scheduling system to allocate the jobs to resources and determine the starting time.

Newly submitted jobs can be executed on the grid either on a single site/machine or they
are split up into several job fragments for multi-site execution. These job fragments are executed
synchronously. That means a job can run in parallel on a set of nodes distributed over more than
one site. This allows the execution of large jobs requiring more nodes than available on a single
machine. In this case the impact of bandwidth and latency has to be considered as wide area
networks are involved. For our modelling, we summarize the overheads caused by communication
and data migration as an increase of the job’s run time.
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3 Algorithm

In previous research [5, 6, 16] we have examined the potential benefits of using multi-site scheduling
in detail. The algorithms used within these projects were extended for this study.
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Fig. 1. Algorithm for Multi-Site Scheduling.

Earlier, the effects of using multi-site in
comparison to single site scheduling and job
sharing have been analyzed [5]. The single
site scenario describes the case that all lo-
cal submitted jobs have to be calculated on
the local resources. The job sharing scenario
described an environment where jobs can be
exchanged between a collection of sites. The
results clearly indicated that using multi-
site scheduling improves the scheduling re-
sults in terms of a better average weighted
response time significantly.

The analysis was extended in order to
study the effects of an increasing run time
for multi-site scheduling resulting from the
overhead due to data management and com-
munication [6]. If a job is executed in multi-
site, the run time of the job is extended by
the overhead which is specified by a param-
eter p. Therefore the new run time r∗ is:

r∗ = (1 + p) · r (1)

Where r is the run time for the job run-
ning on a single machine. This modelling of
the communication overhead is used within
this work in all multi-site cases. The results
showed that considering the communication
overhead multi-site scheduling is still advan-
tageous if the overhead is limited to about
40 % of the run time. Alternative modellings
of the overhead calculations were presented
in [16].

In the work presented in this paper, we
examined the multi-site scheduling behavior
by applying constraints for the job fragmen-
tation during the multi-site scheduling. To
this end two parameters were introduced for
the scheduling process. The first parameter
lower bound restricted the jobs that can be
fragmented during the multi-site scheduling
by a minimal number of necessary requested
processors. The second parameter was im-
plemented as a vector describing the maxi-
mal number of job fragments for certain in-
tervals of processor numbers. This lead to a
further improvement of the scheduling pro-

cess. Based on those results the algorithm was extended by the ability to react on the current
status of the system.
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The basic scheduling process in the grid scheduler works as described in Figure 1. In a first step
the algorithm determines whether or not there are enough free resources at this point in time. If
the job cannot be started in single nor multi-site mode immediately the job is added to a waiting
queue.

Jobs are scheduled from this queue by a First-Come-First-Serve algorithm in combination with
Backfilling ([18, 14]) where each step consists of the method described above. Otherwise a single
machine with enough free resource is searched. Upon a successful search the job is started on this
machine, which is chosen by using the BestFit-strategy [9], immediately. A search failure leads
to the calculation of the needed number of fragments by using a machine list ordered by the
decreasing number of free resources. This allows to minimize the number of fragments (job parts
running multi-site) for a job. If the number of fragments is larger than a given maximal allowed
number of fragments the job is placed in the waiting queue and again backfilling is initiated. Next
the parameter lower bound is checked e.g. a value of 8 implies that only jobs requesting more than
8 resources may be split up.

In the following we must distinguish between the adaptive and the non-adaptive case. The non-
adaptive algorithm directly executes the job in multi-site mode. In the adaptive case the lower
bound is set to zero and the number of fragments is not limited. Additionally the boxed, greyed
area in Figure 1 is inserted. In this part of the algorithm an earliest potential end time of the
job running on a single machine is compared to the end time of a multi-site execution with its
additional overhead. The solution with the earliest end time is chosen. Note that the real starting
time of the job may vary depending on the jobs ahead in the queue.

The algorithm is adaptive as the decision whether to run the jobs in multi-site mode or to wait
for a single site execution is done automatically and depends on the given situations in terms of
machine schedules and the submitted jobs.

4 Evaluation

For the comprehensive evaluation of the described algorithms for different structures a discrete
event simulation was performed. The machine and workload configurations that were examined
during these simulations are described in more detailed in [6, 16]. For a better understanding a
brief overview of our notation is given in the following two subsections.

4.1 Job Configurations

For our scenario with different independent machines with local workload we use real traces of
MPP systems to model this workload. Currently, there are is no real grid workload traces or
grid workload model available. Therefore, we use real traces to emulate the workload of single
machines participating in a grid environment. To this end workload traces from the 430 nodes
IBM RS/6000 SP of the Cornell Theory Center (CTC) are used. Further information on the
CTC-trace are available in [21]. The used workloads and their identifiers are summarized in Table
1. Note that the actual workload in future grid environments may vary in the consistence and
characteristics. Nevertheless, the used workloads give a good impression of the nowadays demand
on computing resources at a MPP.

identifier description

10 20k org An extract of the original CTC traces from job 10000 to 19999.
30 40k org An extract of the original CTC traces from job 30000 to 39999.
60 70k org An extract of the original CTC traces from job 60000 to 69999.
CTC-syn The synthetically generated workload derived from the CTC workload traces.

Table 1. Job Configurations
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4.2 Resource Configuration

The resource configuration is highly influenced by the job model. As we use workload traces that
are derived from a real machine installation with 430 nodes, the resources configuration has to be
selected accordingly. The partitioning of the simulated configurations is shown in Table 2. We use
configurations with a total of 512 resources (nodes) in order to ensure comparability. A larger grid
environment would require additional scaling of the workload without improving the evaluation
validity. Note, that the combination of workload and resource configuration impacts the backlog
by submitted and not yet started jobs. The existence of this backlog is important for the achievable
scheduling quality; e.g. the backfilling strategy relies on the availability of queued jobs to choose
from.

identifier configuration max. size number of machines sum

m64 4 · 64 + 6 · 32 + 8 · 8 64 18 512
m64-8 8 · 64 64 8 512
m128 4 · 128 128 4 512
m256 2 · 256 256 2 512
m256-5 1 · 256 + 4 · 64 256 5 512
m384 1 · 384 + 1 · 64 + 4 · 16 384 6 512
m512 1 · 512 512 1 512

Table 2. Resource Configurations

4.3 Performance Metrics

The resource consumption of a job can be described as the product of the job’s run time and
the number of requested resources. Therefore large jobs have a larger resource consumption than
smaller jobs. The resource consumption of a single job j and the total resource consumption can
be defined as follows:

Resource Consumptionj = (reqResourcesj · (endTimej − startTimej)) (2)

Total Resource Consumption =
∑

j∈Jobs
Resource Consumptionj (3)

One measure for the schedule quality is the average response time weighted by the job’s resource
consumption [19]. We define it as follows:

AWRT =

∑

j∈Jobs
(Resource Consumptionj · (endTimej − submitTimej))

Total Resource Consumption
(4)

With weighting the response time of each job with its resource consumption, therefore all jobs
with the same resource consumption have the same influence on the schedule quality. Otherwise
a small, often insignificant job would have the same impact on this metric as a big job with the
same response time.

As the efficiency of backfilling algorithms is highly dependent on a sufficient backlog [18, 14],
the average weighted wait time is used to survey the average weighted backlog of the system.

AWWT =

∑

j∈Jobs
(Resource Consumptionj · (startTimej − submitTimej))

Total Resource Consumption
(5)
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Fig. 2. Resource consumption of jobs in the CTC-syn workload, sorted by requested resources.

4.4 Fragmentation Parameters

The analysis of the used workloads shows a tendency of jobs to size with the power of 2 [4], as
seen in Figure 2. Herein the resource consumption, see Equation (3), is summed up for all jobs
of a specific width (i.e. the number of requested resources) for the ctc syn workload. The other
workloads show a similar behavior. Because of this ”power of 2” focus we also used power of 2
values for the lower bound parameter. Jobs that fall short of this lower bound can only be scheduled
on a single machine and cannot be distributed across several sites. For the maximum number of
job fragments we use a function defined over several intervals. We define two configurations with
different values for each interval:

1. a limited configuration, wherein only necessary fragmentation of a job for the machine config-
uration with the smallest machines (here: machine configuration m64) is allowed and

2. an unlimited configuration, which does not restrict the fragmentation process at all.

For the unlimited case the number of fragments is only limited by the maximum number of
machines in these configurations and the maximum number of requested resources for a specific
job.

requested resources maximal number of fragments
lower limit upper limit limited configuration unlimited configuration

1 4 1 4
5 8 1 8
9 16 1 16
17 32 1 18
33 64 1 18
65 128 2 18
129 512 8 18

Table 3. Maximal fragmentation for the limited and unlimited configuration
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4.5 Evaluation Results

All displayed results were achieved using the CTC syn workload. As mentioned earlier this work-
load represents the average behavior of all used data sets. The results vary depending on the used
workload, but only within close ranges.

Comparison of limited and unlimited fragmentation In configurations with smaller ma-
chines e.g. m64, as shown in Figure 3, and an overhead up to 50% the impact of the lower bounds
is not as significant as in cases of larger machines or larger overhead. Here the unlimited multi-site
strategy is far superior to the limited fragmentation strategy.
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Fig. 3. Comparison of m64

The benefit of a higher number of fragments in the unlimited configuration ranges at about 60%
for an overhead between 10% to 60% and m64 compared to the limited configuration. Whereas
the m64 8 configuration with equally sized machines shows a decrease of the average weighted
response time of only around 10% for a higher fragmentation and is more dependent on the lower
bound. The impact of different machine configurations is described in [6] in more detail.

Especially in resource configurations with smaller machines the average weighted response
time scales directly with the overhead parameter p, as major parts of the workload can only be
scheduled in multi-site mode, as shown earlier in Figure 2.

Figure 3 verifies the advantages of unlimited fragmentation under the condition of a lower
bound of 64 and an overhead of up to 180% for small machine configurations. Note, that in this
case the average weighted response time may reach values up to twelve times as high as the average
weighted response time on a single large machine of 512 nodes.
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Impact of lower bounds The influence of the lower bound is highly dependent on the additional
run time caused by the overhead. Without overhead a multi-site execution would be beneficial in
any case. Jobs which run unnecessarily in multi-site manner can be forced to run on a single
machine, which then reduces the impact of the overhead on the overall performance. Up to a
certain level of overhead the use of multi-site (besides mandatory fragmentation) leads to a better
average weighted response time in our simulations.
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Fig. 4. Influence of the lower bound in a m384 configuration.

This correlation is observed for the m256 configuration too. Here a lower bound of 128 (which
is half the size of the biggest machine [20]) proves to be beneficial compared to any other values.
For an overhead of 80% a reduction of about 12% is reached and for 120% even 32%.

Figure 4 shows similar results for the m384 configuration and a lower bound of 128: decrease of
average weighted response time by 16,3% for p = 80%, and decrease of average weighted response
time of 29,9% for p = 120%. Here the limited and the unlimited configurations show no difference
with regard to the average weighted response time.

Choosing an unappropriate lower bound may lead to a performance decrease, e.g. a lower
bound of 256 results in an increased average weighted response time of 16% and a lower bound of
96 increases the average weighted response time by at least 29 % compared to a lower bound of
128 in the m384 configuration, as shown in Figure 4.

The Adaptive Multi-Site Algorithm In Figure 5 the average weighted response time for the
resource configurations m512 and m384 for the best non-adaptive and the adaptive scheduling
results are shown. The improvements by using adaptive scheduling in comparison to the non-
adaptive case can clearly be identified. The average weighted response time using the adaptive
scheduling process increaes only at about 35 % in comparison the the single site machine (m512)
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by an overhead of 300 %. In opposite, the average weighted response time of the non-adaptive
scheduling system increases of about 244 % with the same overhead of 300 %.
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Fig. 5. Comparison of adaptive and best non-adaptive schedules for m384

Note, that using resource configuration m384 even for the largest jobs multi-site scheduling is
not necessary, as the largest job within the workload requests only 336 nodes and can therefore
be executed on the largest machine which consists of 384 nodes. Even with an overhead of 300 %
using resource configuration m384 the adaptive scheduling system executes about 4 % of all jobs
in multi-site mode. This is only a 42 % reduction compared to an overhead of 30 % in the same
configuration. Whereas the resource consumption of the multi-site jobs decreases to 30 % in the
same case. This indicates a shift towards the use of smaller, in the sense of resource consumption,
jobs for multi-site scheduling. All over, increasing the overhead 10 times from 30 % to 300 % only
results in an increase of the average weighted response time of about 7 % in this configuration.

In the best non-adaptive case increasing the overhead 10 times form 30 % to 300 % results in
a by 66 % higher average weighted response time. Note, that in the m384 configuration with any
or even without overhead the best non-adaptive multi-site scheduling system performs worse than
the adaptive system with an overhead of 300 % as seen in Figure 5. A similar behavior can be
observed in all other resource configurations.

In Figure 6 all resource configurations with the adaptive scheduling system are compared. The
average weighted response time for the resource configuration m512, given as a reference, is always
constant as no multi-site scheduling is invoked.The results of configurations m64 and m64 8 show
an increasing disadvantage which almost scales with the overhead from 30 % to 300 % up to a
factor of about 15. Whereas the influence of the overhead on the overall performance for all other
resource configurations is not as significant. The configurations m128 , m256 and m256 5 show a
similar behavior in terms of performance. For overheads between 30 % and 300 %, none of these
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three configurations clearly outperforms any of the other two in the adaptive case as shown in
Figure 6.

resource configuration number of multi-site jobs ∆ Jobs ∆ resource consumption
overhead 30 % overhead 300 % in % in %

m64 1069 430 -60 +176
m64-8 815 387 -53 +132
m128 478 337 -29 +88
m256 336 189 -44 ≈ 0
m256-5 589 411 -30 +90
m384 637 368 -42 -71

Table 4. Comparison of adaptive configurations with overheads of 30 % to 300 % in regard to the
alternation of the number and the resource consumption of multi-site jobs

This Figure also displays the influence of different machine configurations. The equal parti-
tioned configuration m64 8 outperforms its non-balanced counterpart m64. This is due to the fact
that more larger machines are available for the execution of large jobs, leading to more flexibility
for the overall scheduling process. For example, the m64 8 with an overhead of 180 % shows a
20 % lower average weighted response time than the configuration m64. A similar, but not as
significant behavior can be observed between the m256 and m256 5 configurations.

The difference of the average weighted response time between the configurations m128 and
m256 is about 7 % at an overhead of 180 %. Whereas the resource configuration m384produces
with the same overhead much better scheduling results, e.g. for an overhead of 180 % the average
weighed response time is 55 % smaller than for configuration m256 and 66 % smaller than for
configuration m128 . The most significant impact of the adaptive scheduling system can be ob-
served in the results of the resource configuration m384as most resources are combined in a single
machine and therefore no multi-site scheduling is necessary. Here the multi-site scheduling is only
used to enhance the quality of the overall schedule.
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5 Conclusion

In this paper we examined three enhancements to a multi-site scheduler for grid computing envi-
ronments. If a job cannot be placed directly on a single machine, the multi-site scheduler splits the
original job in several fragments which are then started synchronously on multiple sites/machines.
The communication between job fragments and the additional effort of data migration is consid-
ered in extending the jobs runtime by a given percentage. We used a simulation environment to
evaluate and compare the performance of different multi-site grid scheduling strategies in terms
of average weighted completion time. As job input we extracted job sets from real trace logs.
Additionally different machine configurations were evaluated in order to measure the impact of
different machine sizes on the way multi-site jobs are distributed across the grid.

In the first enhancements a lower bound parameter has been introduced restricting the multi-
site execution to jobs requiring at least a certain number of resources. Setting the lower bound
resulted in a significant improvement of up to 30% in the average weighted response time for certain
scenarios. Additionally we restricted the number of fragments to be generated by the multi-site
scheduler. For communication overheads with over 60% of the original execution time it proved to
be beneficial to limit the fragmentation process.

A different approach was examined using an adaptive version of the multi-site scheduler. Here
the scheduler compares the completion times of single- and multi-site execution. For single-site
execution the waiting time until the job can be started has to be considered, whereas for multi-
site the overhead has to be added to the runtime. Depending on the result the job either is
added to the queue or is directly started in multi-site mode. The evaluation showed that the
adaptive version substantially improved the performance of the multi-site scheduler, regardless
what overhead percentage for the multi-site execution is chosen. Therefore adaptive multi-site
scheduler seem to be the best algorithm for a multi-site environment. As the presented adaptive
algorithm is a basic implementation, more sophisticated adaptive algorithms may further increase
the performance.

Generally, the results indicate that the usage of small systems in combination with multi-site
scheduling can not perform as well as single large machines with the same amount of resources.
The presented algorithms decrease this difference significantly. In any case the participation in a
grid environment seems to be beneficial, as the usage of multi-site computing enables the execution
of jobs that consume more resources than available on the largest single machine in such a grid
environment.
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